题目内容
【题目】通过市场调查,得到某种产品的资金投入(单位:万元)与获得的利润(单位:千元)的数据,如表所示
资金投入 | 2 | 3 | 4 | 5 |
利润 | 2 | 3 | 5 | 6 |
(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;
(2)该产品的资金投入每增加万元,获得利润预计可增加多少千元?若投入资金万元,则获得利润的估计值为多少千元?
参考公式:
【答案】(1)(2)获得利润预计增加千元,获得利润的估计值为千元
【解析】
(1)利用公式求出,再将样本中心点代入求出即可求解.
(2)将代入(1)中的回归直线方程即可求解.
解:(1)
∴,
.
∴线性回归方程为.
(2)由(1)可知,资金投入每增加万元,获得利润预计增加千元
当时,(千元),
∴当投入资金万元,获得利润的估计值为千元
练习册系列答案
相关题目
【题目】某生产企业研发了一种新产品,该新产品在某网店试销一个阶段后得到销售单价和月销售量之间的一组数据,如下表所示:
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 |
月销售量(万件) | 11 | 10 | 8 | 6 | 5 |
(1)根据统计数据,求出关于的回归直线方程,并预测月销售量不低于12万件时销售单价的最大值;
(2)生产企业与网店约定:若该新产品的月销售量不低于10万件,则生产企业奖励网店1万元;若月销售量不低于8万件且不足10万件,则生产企业奖励网店5000元;若月销售量低于8万件,则没有奖励.现用样本估计总体,从上述5个销售单价中任选2个销售单价,下个月分别在两个不同的网店进行销售,求这两个网店下个月获得奖励的总额的分布列及其数学期望.
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考数据:,.