题目内容
已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且l1过点(-3,-1);
(2)l1∥l2,且l1过(0,1).
(1)l1⊥l2,且l1过点(-3,-1);
(2)l1∥l2,且l1过(0,1).
(1)∵l1⊥l2,∴a(a-1)+(-b)×1=0…(1)
又l1过点(-3,-1),则-3a+b+4=0…(2)
联立(1)(2)可得,a=2,b=2.
(2)∵过点(0,1)
∴-b+4=0,解得:b=4
依题意有,
=
≠
解得:a=
故a=
,b=4
又l1过点(-3,-1),则-3a+b+4=0…(2)
联立(1)(2)可得,a=2,b=2.
(2)∵过点(0,1)
∴-b+4=0,解得:b=4
依题意有,
a |
a-1 |
-b |
1 |
4 |
b |
解得:a=
4 |
5 |
故a=
4 |
5 |
练习册系列答案
相关题目