题目内容

设0≤x≤2π,且|cosx-sinx|=sinx-cosx,则x的取值范围为
[
π
4
4
]
[
π
4
4
]
分析:根据题意可得sin x≥cosx,因此同一坐标系内作出y=sin x和y=cosx的图象,找出它们的交点A、B的坐标,结合图象即可得到满足条件的x的取值范围.
解答:解:∵|cosx-sin x|=sinx-cosx,
∴sinx-cosx≥0,可得sin x≥cosx
同一坐标系内作出y=sin x和y=cosx的图象

∵y=sin x和y=cosx的图象交于点A(
π
4
2
2
)和B(
4
,-
2
2

∴当sin x≥cosx成立时,x的取值范围为[
π
4
4
]

故答案为:[
π
4
4
]
点评:本题给出三角函数的等式,要我们求x的取值范围,着重考查了三角函数的符号和三角函数的图象与性质等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网