题目内容

在一条笔直的工艺流水线上有n个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为x1,x2,…,xn,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(Ⅰ)若n=3,每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)若n=5,工作台从左到右的人数依次为3,2,1,2,2,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
精英家教网
分析:设供应站坐标为x,各工作台上的所有工人到供应站的距离之和为d(x).
对于(1)由题意有d(x)=|x-x1|+|x-x2|+|x-x3|然后对x的范围进行讨论分析,知当x=x2时,所有工人到供应站的距离之和最短.
对于(2)由题设知,各工作台上的所有工人到供应站的距离之和为d(x)=3|x-x1|+2|x-x2|+|x-x3|+2|x-x4|+2|x-x5|.对x的取值范围进行分类讨论,判断最佳的位置.
解答:解:设供应站坐标为x,各工作台上的所有工人到供应站的距离之和为d(x).
(Ⅰ)d(x)=|x-x1|+|x-x2|+|x-x3|.(2分)
当x<x1时,d(x)=x1+x2+x3-3x在区间(-∞,x1)上是减函数;
当x>x3时,d(x)=3x-(x1+x2+x3)在区间(x3,+∞)上是增函数.(4分)
所以,x必须位于区间[x1,x3]内,此时d(x)=x3-x1+|x-x2|(*),
当且仅当x=x2时,(*)式取最小值,且d(x2)=x3-x1,即供应站的位置为x=x2.(7分)
(Ⅱ)由题设知,各工作台上的所有工人到供应站的距离之和为d(x)
=3|x-x1|+2|x-x2|+|x-x3|+2|x-x4|+2|x-x5|.(8分)
类似于(Ⅰ)的讨论知,x1≤x≤x5,且有d ( x )=
2x2+x3+2x4+2x5-3x1-4x  x1≤x<x2 
x3+2x4+2x5-3x1-2x2         x2≤x<x3 
2x+2x4+2x5-3x1-2x2-x3  x3≤x<x4 
6x+2x5-3x1-2x2-x3-2x4  x4≤x≤x5 
(11分)
所以,函数d(x)在区间(x1,x2)上是减函数,在区间(x3,x5)上是增函数,在区间[x2,x3]上是常数.故供应站位置位于区间[x2,x3]上任意一点时,均能使函数d(x)取得最小值,且最小值为x3+2x4+2x5-3x1-2x2,x2≤x≤x3.(13分)
点评:本题主要考查将实际问题转化为数学问题的能力,以及综合运用函数知识解决问题的能力,在求最值的过程中,由于本题是绝对值函数,故需分类去绝对值号.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网