题目内容

6.设a,b,c都是正数,证明不等式$\frac{{a}^{2}}{b+c}$+$\frac{{b}^{2}}{c+a}$+$\frac{{c}^{2}}{a+b}$$≥\frac{1}{2}$(a+b+c)当且仅当a=b=c时取等号.

分析 利用柯西不等式的变形$\frac{{{a}_{1}}^{2}}{{b}_{1}}$+$\frac{{{a}_{2}}^{2}}{{b}_{2}}$+…+$\frac{{{a}_{n}}^{2}}{{b}_{n}}$≥$\frac{({a}_{1}+{a}_{2}+…+{a}_{n})^{2}}{{b}_{1}+{b}_{2}+…+{b}_{n}}$化简即得结论.

解答 证明:柯西不等式的变形$\frac{{{a}_{1}}^{2}}{{b}_{1}}$+$\frac{{{a}_{2}}^{2}}{{b}_{2}}$+…+$\frac{{{a}_{n}}^{2}}{{b}_{n}}$≥$\frac{({a}_{1}+{a}_{2}+…+{a}_{n})^{2}}{{b}_{1}+{b}_{2}+…+{b}_{n}}$得:
$\frac{{a}^{2}}{b+c}$+$\frac{{b}^{2}}{c+a}$+$\frac{{c}^{2}}{a+b}$≥$\frac{(a+b+c)^{2}}{(b+c)+(c+a)+(a+b)}$=$\frac{1}{2}$(a+b+c).

点评 本题考查不等式的证明,利用柯西不等式的变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网