题目内容
【题目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ∥ ,求x的值;
(Ⅱ)记f(x)= ,求f(x)的最大值和最小值以及对应的x的值.
【答案】解:(Ⅰ)∵ =(cosx,sinx), =(3,﹣ ), ∥ ,
∴﹣ cosx+3sinx=0,
∴tanx= ,
∵x∈[0,π],
∴x= ,
(Ⅱ)f(x)= =3cosx﹣ sinx=2 ( cosx﹣ sinx)=2 cos(x+ ),
∵x∈[0,π],
∴x+ ∈[ , ],
∴﹣1≤cos(x+ )≤ ,
当x=0时,f(x)有最大值,最大值3,
当x= 时,f(x)有最小值,最大值﹣2
【解析】(Ⅰ)根据向量的平行即可得到tanx= ,问题得以解决,
(Ⅱ)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出
【考点精析】本题主要考查了三角函数的最值的相关知识点,需要掌握函数,当时,取得最小值为;当时,取得最大值为,则,,才能正确解答此题.
练习册系列答案
相关题目