题目内容
3.两条曲线的极坐标方程分别为C1:ρ=1与C2:ρ=2cos(θ+$\frac{π}{3}$),它们相交于A,B两点.(Ⅰ)写出曲线C1的参数方程和曲线C2的普通方程;
(Ⅱ)求线段AB的长.
分析 (I)利用ρ2=x2+y2即可得出C1:ρ=1的普通方程,利用sin2α+cos2α=1即可得出其参数方程C2:ρ=2cos(θ+$\frac{π}{3}$),展开${ρ}^{2}=2×\frac{1}{2}ρcosθ-2×\frac{\sqrt{3}}{2}ρsinθ$,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出.
(II)联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{{x}^{2}+{y}^{2}-x+\sqrt{3}y=0}\end{array}\right.$,解得A,B,再利用两点之间的距离公式即可得出.
解答 解:(I)C1:ρ=1的普通方程为x2+y2=1,其参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α为参数).
C2:ρ=2cos(θ+$\frac{π}{3}$),化为${ρ}^{2}=2×\frac{1}{2}ρcosθ-2×\frac{\sqrt{3}}{2}ρsinθ$,
∴${x}^{2}+{y}^{2}=x-\sqrt{3}y$,即${x}^{2}+{y}^{2}-x+\sqrt{3}y$=0.
(II)联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{{x}^{2}+{y}^{2}-x+\sqrt{3}y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=-\frac{\sqrt{3}}{2}}\end{array}\right.$.
∴|AB|=$\sqrt{(1+\frac{1}{2})^{2}+(0+\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{3}$.
点评 本题考查了极坐标方程化为直角坐标方程、普通方程化为参数方程、曲线的交点、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.
(1)输入x.
(2)判断x>2是否成立,若是,y=x; 否则,y=-2x+6.
(3)输出y.
当输入的x∈[0,7]时,输出的y的取值范围是( )
A. | [2,7] | B. | [2,6] | C. | [6,7] | D. | [0,7] |
A. | [-2,2] | B. | [-3,3] | C. | [-$\sqrt{5}$,$\sqrt{5}$] | D. | [-5,5] |
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{4}$ |