题目内容

对于实数x,当n≤x<n+1(n∈Z)时,规定[x]=n,则不等式4[x]2-36[x]+45<0的解集为(  )
A.{x|2≤x<8}B.{x|2<x≤8}
C.{x|2≤x≤8}D.{x|2<x<8}
A
先利用换元法将不等式化为一元二次不等式,求得[x]的范围,再结合[x]的含义得出x的范围.
令t=[x],则不等式化为4t2-36t+45<0,解得<t<,而t=[x],所以<[x]<,由[x]的定义可知x的取值范围是2≤x<8,即不等式解集为{x|2≤x<8}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网