题目内容
【题目】对于函数,若,则称为的“不动点”;若,则称为的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为和,即,.
()设函数,求集合和.
()求证:.
()设函数,且,求证:.
【答案】(),;()证明见解析;(证明见解析.
【解析】
()由,解得,;由,解得,,;()若,则成立;若,设为中任意一个元素,则有,可得,故,从而可得结果;()①当时,的图象在轴的上方,可得对于,恒成立,则.②当时,的图象在轴的下方,可得对于任意,恒成立,则.
()由,
得,
解得,
由,得,
解得,
∴,.
()若,
则成立,
若,
设为中任意一个元素,
则有,
∴,
故,
∴.
()由,得方程无实数解,
∴.
①当时,的图象在轴的上方,
所以任意,恒成立,
即对于任意,恒成立,
对于,则有成立,
∴对于,恒成立,
则.
②当时,的图象在轴的下方,
所以任意,恒成立,
即对于,恒成立,
对于实数,则有成立,
所以对于任意,恒成立,
则,
综上知,对于,
当时,.
【题目】设等差数列{an}的公差d>0,前n项和为Sn , 已知3 是﹣a2与a9的等比中项,S10=﹣20.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn(n≥6).
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中a的值;
(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(参考公式:K2= ,其中n=a+b+c+d)
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).