题目内容

(2013•浙江模拟)如图,已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为-3,则∠MBN的大小等于(  )
分析:设直线PQ的方程为:y=kx-1,P(x1,y1),Q(x2,y2),联立直线PQ方程与抛物线方程消掉y得x的二次方程,根据韦达定理及斜率公式可求得kBP+kBQ=0,再由已知kBP•kBQ=-3可解得kBP=
3
kBQ=-
3
,由此可知∠BNM与∠BMN的大小,由三角形内角和定理可得∠MBN.
解答:解:设直线PQ的方程为:y=kx-1,P(x1,y1),Q(x2,y2),
y=kx-1
x2=2py
得x2-2pkx+2p=0,△>0,
则x1+x2=2pk,x1x2=2p,
kBP=
y1-1
x1
kBQ=
y2-1
x2

kBP+kBQ=
y1-1
x1
+
y2-1
x2
=
kx1-2
x1
+
kx2-2
x2

=
2kx1x2-2(x1+x2)
x1x2
=
2k•2p-2•2pk
2p
=0,即kBP+kBQ=0①
又kBP•kBQ=-3②,
联立①②解得kBP=
3
kBQ=-
3

所以∠BNM=
π
3
∠BMN=
π
3

故∠MBN=π-∠BNM-∠BMN=
π
3

故选D.
点评:本题考查直线、抛物线方程及其位置关系等知识,解决本题的关键是通过计算发现直线BP、BQ斜率互为相反数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网