题目内容
9.一长方形两边长分别用x与y表示,如果x以0.01m/s的速度减小,y边以0.02m/s的速度增加,求在x=20m,y=15m时,长方形面积的变化率.分析 由题意,S=(20-0.01t)(15+0.02t),利用导数求出长方形面积的变化率.
解答 解:由题意,S=(20-0.01t)(15+0.02t),
∴S′=-0.01×(15+0.02t)+(20-0.01t)×0.02=0.25-0.0004t.
点评 本题考查导数知识的运用,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
20.根据表格内容填空:
(1)写出经过这些点的二次函数解析式y=x2-4;
(2)写出所对应的一元二次方程的解±2;
(3)写出当y>0时的一元二次不等式的解集{x|x<-2,或x>2};;
(4)写出当y≤0时的一元二次不等式的解集{x|-2≤x≤2};;
(5)写出当y≤2时的一元二次不等式的解集{x|-$\sqrt{6}$≤x≤$\sqrt{6}$};;
(6)写出当y>1时的一元二次不等式的解集{x|x<-$\sqrt{5}$,或x>$\sqrt{5}$};.
x | -2 | 0 | 2 |
y | 0 | -4 | 0 |
(2)写出所对应的一元二次方程的解±2;
(3)写出当y>0时的一元二次不等式的解集{x|x<-2,或x>2};;
(4)写出当y≤0时的一元二次不等式的解集{x|-2≤x≤2};;
(5)写出当y≤2时的一元二次不等式的解集{x|-$\sqrt{6}$≤x≤$\sqrt{6}$};;
(6)写出当y>1时的一元二次不等式的解集{x|x<-$\sqrt{5}$,或x>$\sqrt{5}$};.
17.已知f(x)是反比例函数,且f(2)=-4,则f(x)=( )
A. | -2x | B. | 3x-10 | C. | -$\frac{x}{8}$ | D. | -$\frac{8}{x}$ |