题目内容
设f1(x)=
,定义fn+1 (x)=f1[fn(x)],an=
(n∈N*).
(1)求数列{an}的通项公式;
(2)若T2n=a1+2a2+3a3+…+2na2n,Qn=
(n∈N*),试比较9T2n与Qn的大小,并说明理由.
2 |
1+x |
fn(0)-1 |
fn(0)+2 |
(1)求数列{an}的通项公式;
(2)若T2n=a1+2a2+3a3+…+2na2n,Qn=
4n2+n |
4n2+4n+1 |
分析:(1)根据f1(x)=
,定义fn+1 (x)=f1[fn(x)],an=
(n∈N*).可得f1(0)=2,a1=
=
,fn+1(0)=f1[fn(0)]=
,从而an+1=-
an.所以数列{an}是首项为
,公比为-
的等比数列,故可求数列{an}的通项公式.
(2)利用错误相减法求得T2n=
(1-
),从而9T2n=1-
,又Qn=1-
,故当n=1时,22n=4,(2n+1)2=9,所以9T2n<Q n;当n=2时,22n=16,(2n+1)2=25,所以9T2n<Qn;当n≥3时,22n=[(1+1)n]2=(Cn0+Cn1+Cn3+…+Cnn)2>(2n+1)2,从而得到结论.
2 |
1+x |
fn(0)-1 |
fn(0)+2 |
2-1 |
2+2 |
1 |
4 |
2 |
1+fn(0) |
1 |
2 |
1 |
4 |
1 |
2 |
(2)利用错误相减法求得T2n=
1 |
9 |
3n+1 |
22n |
3n+1 |
22n |
3n+1 |
(2n+1)2 |
解答:解:(1)∵f1(0)=2,a1=
=
,fn+1(0)=f1[fn(0)]=
,
∴an+1=
=
=
=-
=-
an.
∴数列{an}是首项为
,公比为-
的等比数列,
∴an=
(-
)n-1.
(2)∵T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n,
∴-
T2n=(-
a1)+(-
)2a2+(-
)3a3+…+(-
)(2n-1)a2n-1+(-
)2na2n
=a2+2a3+…+(2n-1)a2n-na2n.
两式相减,得
T2n=a1+a2+a3+…+a2n+na2n.
∴
T2n=
+n×
(-
)2n-1=
-
(-
)2n+
(-
)2n-1.
T2n=
-
(-
)2n+
(-
)2n-1=
(1-
).
∴9T2n=1-
.
又Qn=1-
,
当n=1时,22n=4,(2n+1)2=9,∴9T2n<Q n;
当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn;
当n≥3时,22n=[(1+1)n]2=(Cn0+Cn1+Cn3+…+Cnn)2>(2n+1)2,∴9T2n<Qn;
综上得:9T2n<Q n.
2-1 |
2+2 |
1 |
4 |
2 |
1+fn(0) |
∴an+1=
fn+1(0)-1 |
fn+1(0)+2 |
| ||
|
1-fn(0) |
4+2fn(0) |
1 |
2 |
fn(0)-1 |
fn(0)+2 |
1 |
2 |
∴数列{an}是首项为
1 |
4 |
1 |
2 |
∴an=
1 |
4 |
1 |
2 |
(2)∵T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n,
∴-
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=a2+2a3+…+(2n-1)a2n-na2n.
两式相减,得
3 |
2 |
∴
3 |
2 |
| ||||
1+
|
1 |
4 |
1 |
2 |
1 |
6 |
1 |
6 |
1 |
2 |
n |
4 |
1 |
2 |
T2n=
1 |
9 |
1 |
9 |
1 |
2 |
n |
6 |
1 |
2 |
1 |
9 |
3n+1 |
22n |
∴9T2n=1-
3n+1 |
22n |
又Qn=1-
3n+1 |
(2n+1)2 |
当n=1时,22n=4,(2n+1)2=9,∴9T2n<Q n;
当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn;
当n≥3时,22n=[(1+1)n]2=(Cn0+Cn1+Cn3+…+Cnn)2>(2n+1)2,∴9T2n<Qn;
综上得:9T2n<Q n.
点评:本题以函数为载体,考查数列的通项,考查等比数列的定义,考查错位相减法求数列的和,考查分类讨论的数学思想,综合性强.
练习册系列答案
相关题目