题目内容
设f1(x)=
,fn+1(x)=f1[fn(x)],且an=
,n∈N*,则a2009等于( )
2 |
1+x |
fn(0)-1 |
fn(0)+2 |
分析:根据fn+1(x)=f1[fn(x)],an=
,可得{an}构成以a1为首项,q=-
为公比的等比数列,根据f1(x)=
,可得a1=
=
,从而可得an=
•(-
)n-1,故可求a2009.
fn(0)-1 |
fn(0)+2 |
1 |
2 |
2 |
1+x |
f1(0)-1 |
f1(0)+2 |
1 |
4 |
1 |
4 |
1 |
2 |
解答:解:∵fn+1(x)=f1[fn(x)],an=
∴an=
=-
•
=-
an-1(n≥2),
∴{an}构成以a1为首项,q=-
为公比的等比数列.
∵f1(x)=
,
∴a1=
=
∴an=
•(-
)n-1,
则a2009=
×(-
)2009-1=(
)2010.
故选A.
fn(0)-1 |
fn(0)+2 |
∴an=
2-fn-1(0)-1 |
2+fn-1(0)+2 |
1 |
2 |
fn-1(0)-1 |
fn-1(0)+2 |
1 |
2 |
∴{an}构成以a1为首项,q=-
1 |
2 |
∵f1(x)=
2 |
1+x |
∴a1=
f1(0)-1 |
f1(0)+2 |
1 |
4 |
∴an=
1 |
4 |
1 |
2 |
则a2009=
1 |
4 |
1 |
2 |
1 |
2 |
故选A.
点评:本题考查等比数列的判定,考查等比数列的通项,考查函数与数列的结合,判定数列为等比数列是我们解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目