题目内容
【题目】已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性.
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.
【答案】见解析
【解析】(1)∵f(x)=ex-,且y=ex是增函数,
y=-是增函数,∴f(x)是增函数.
∵f(x)的定义域为R,
且f(-x)=e-x-ex=-f(x),
∴f(x)是奇函数.
(2)由(1)知f(x)是增函数和奇函数,
由f(x-t)+f(x2-t2)≥0对x∈R恒成立,
则f(x-t)≥f(t2-x2).
∴t2-x2≤x-tx2+x≥t2+t对x∈R恒成立≤min对一切x∈R恒成立≤0t=-.
即存在实数t=-,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立.
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.
平均车速超过 100km/h人数 | 平均车速不超过 100km/h人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式与数据: ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |