题目内容

有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为(  )
A.
2
+
6
2
a
B.(
2
+
6
)a
C.
1+
3
2
a
D.(1+
3
)a

精英家教网
由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:
分析易知当以PP′为正方形的对角线时,
所需正方形的包装纸的面积最小,此时边长最小.
设此时的正方形边长为x则:(PP′)2=2x2
又因为 PP′=a+2×
3
2
a=a+
3
a

( a+
3
a)
2
=2x2

解得:x=
6
+
2
2
a

故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网