题目内容

15.设a>1,椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1与双曲线$\frac{{x}^{2}}{{a}^{2}-1}$-y2=1的四个交点构成一个正方形,它们的离心率分别为e1,e2,求${{e}_{1}}^{2}$+${{e}_{2}}^{2}$.

分析 设正方形的一个顶点为(m,m),代入椭圆、双曲线方程,通过代入消元可解得a2=$\frac{1+\sqrt{3}}{2}$,再由椭圆和双曲线的离心率公式,即可求出它们的平方和.

解答 解:由对称性知,设正方形的一个顶点为(m,m),(m>0),
则代入椭圆和双曲线方程,即有
$\frac{{m}^{2}}{{a}^{2}}$+m2=1,$\frac{{m}^{2}}{{a}^{2}-1}$-m2=1.
解得a2=$\frac{1+\sqrt{3}}{2}$,
即有e1=$\frac{\sqrt{{a}^{2}-1}}{a}$,e2=$\frac{a}{\sqrt{{a}^{2}-1}}$,
则${{e}_{1}}^{2}$+${{e}_{2}}^{2}$=$\frac{{a}^{2}-1}{{a}^{2}}$+$\frac{{a}^{2}}{{a}^{2}-1}$=1-$\frac{2}{1+\sqrt{3}}$+$\frac{1}{1-\frac{2}{1+\sqrt{3}}}$
=1-($\sqrt{3}$-1)+2+$\sqrt{3}$=4.

点评 本题考查椭圆、双曲线的方程与性质,主要考查离心率的求法,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网