题目内容
设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:
①若PA,PB,PC两两互相垂直,则H是△ABC的垂心
②若∠ABC=90°,H是斜边AC上的中点,则PA=PB=PC
③若PA=PB=PC,则H是△ABC的外心
④若P到△ABC的三边的距离相等,则H为△ABC的内心
其中正确命题的是( )
①若PA,PB,PC两两互相垂直,则H是△ABC的垂心
②若∠ABC=90°,H是斜边AC上的中点,则PA=PB=PC
③若PA=PB=PC,则H是△ABC的外心
④若P到△ABC的三边的距离相等,则H为△ABC的内心
其中正确命题的是( )
分析:根据三角形垂心,外心,内心的定义及棱锥的几何特征,结合勾股定理,逐一判断题目中四个命题的真假,可得答案.
解答:解:∵三棱锥P-ABC的顶点P在平面ABC上的射影是H,
当PA,PB,PC两两互相垂直时,则PA⊥平面PBC,则PA⊥BC,
又由PH⊥底面ABC,则PH⊥BC,进而BC⊥平面PAH,即AH⊥BC,
同理可证BH⊥AC,CH⊥AB,故H是△ABC的垂心,即①正确;
若∠ABC=90°,H是斜边AC上的中点,则HA=HB=HC,由勾股定理易得PA=PB=PC,故②正确;
若PA=PB=PC,由勾股定理易得HA=HB=HC,故③H是△ABC的外心正确;
如图P是△ABC所在平面外一点,若P到△ABC三边的距离相等,E,F,D分别是点P在三个边上的垂足,故可证得HE,HF,HD分别垂直于三边且相等,由内切圆的加心的定义知,此时点H是三角形的内心,故④正确
故选D
当PA,PB,PC两两互相垂直时,则PA⊥平面PBC,则PA⊥BC,
又由PH⊥底面ABC,则PH⊥BC,进而BC⊥平面PAH,即AH⊥BC,
同理可证BH⊥AC,CH⊥AB,故H是△ABC的垂心,即①正确;
若∠ABC=90°,H是斜边AC上的中点,则HA=HB=HC,由勾股定理易得PA=PB=PC,故②正确;
若PA=PB=PC,由勾股定理易得HA=HB=HC,故③H是△ABC的外心正确;
如图P是△ABC所在平面外一点,若P到△ABC三边的距离相等,E,F,D分别是点P在三个边上的垂足,故可证得HE,HF,HD分别垂直于三边且相等,由内切圆的加心的定义知,此时点H是三角形的内心,故④正确
故选D
点评:本题考查的知识点是三角形的五心,其中根据已知条件及棱锥的几何特征,得到H点的几何特征是解答的关键.
练习册系列答案
相关题目