题目内容

【题目】已知当x∈[0,1]时,函数y=(mx﹣1)2 的图象与y= +m的图象有且只有一个交点,则正实数m的取值范围是(  )
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)

【答案】B
【解析】解:根据题意,由于m为正数,y=(mx﹣1)2 为二次函数,在区间(0, )为减函数,( ,+∞)为增函数,
函数y= +m为增函数,
分2种情况讨论:
①、当0<m≤1时,有 ≥1,
在区间[0,1]上,y=(mx﹣1)2 为减函数,且其值域为[(m﹣1)2 , 1],
函数y= +m为增函数,其值域为[m,1+m],
此时两个函数的图象有1个交点,符合题意;
②、当m>1时,有 <1,
y=(mx﹣1)2 在区间(0, )为减函数,( ,1)为增函数,
函数y= +m为增函数,其值域为[m,1+m],
若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,
解可得m≤0或m≥3,
又由m为正数,则m≥3;
综合可得:m的取值范围是(0,1]∪[3,+∞);
故选:B.
【考点精析】关于本题考查的函数的值域和函数单调性的性质,需要了解求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的;函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网