题目内容

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

【答案】(1);(2)最小值,直线的方程为.

【解析】试题分析:(1)由三角形的面积,即可求得c=2,将点代入椭圆方程,由椭圆的性质a2=b2+c2,即可求得a和b的值,求得椭圆方程;

(2)直线的方程为,则原点到直线的距离,由弦长公式可得.将代入椭圆方程,得,得.可得.可得所求结论.

试题解析:(1)由的面积可得,即,∴.①

又椭圆过点,∴.②

由①②解得,故椭圆的标准方程为

(2)设直线的方程为,则原点到直线的距离

由弦长公式可得

代入椭圆方程,得

由判别式,解得

由直线和圆相交的条件可得,即,也即

综上可得的取值范围是

,则

由弦长公式,得

,得

,∴,则当时,取得最小值,此时直线的方程为

点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网