题目内容
【题目】已知正项等比数列,等差数列满足,且是与的等比中项.
(1)求数列的通项公式;
(2)设,求数列的前项和.
【答案】(1);(2).
【解析】试题分析:(1)根据,是与的等比中项列出关于公比 、公差的方程组,解方程组可得与的值,从而可得数列与的的通项公式;(2)由(1)可知,所以,对分奇数、偶数两种情况讨论,分别利用分组求和法,错位相减求和法,结合等差数列求和公式与等比数列求和公式求解即可.
试题解析:(1)设等比数列的公比为,等差数列的公差为
由是与的等比中项可得:
又,则:,解得或
因为中各项均为正数,所以,进而.
故.
(2)设
设数列的前项和为,数列的前项和为,
当为偶数时,,
当为奇数时, ,
而 ①,
则②,
由①-②得:
,
,因此, 综上:.
练习册系列答案
相关题目
【题目】已知某保险公司的某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下表:
上年度出险次数 | 0 | 1 | 2 | 3 | |
保费(元) |
随机调查了该险种的200名续保人在一年内的出险情况,得到下表:
出险次数 | 0 | 1 | 2 | 3 | |
频数 | 140 | 40 | 12 | 6 | 2 |
该保险公司这种保险的赔付规定如下表:
出险序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
赔付金额(元) | 0 |
将所抽样本的频率视为概率。
(1)求本年度—续保人保费的平均值的估计值;
(2)求本年度—续保人所获赔付金额的平均值的估计值;
(3)据统计今年有100万投保人进行续保,若该公司此险种的纯收益不少于900万元,求的最小值(纯收益=总入保额-总赔付额)。