题目内容
已知函数(其中a,b为实常数)。
(Ⅰ)讨论函数的单调区间:
(Ⅱ)当时,函数有三个不同的零点,证明::
(Ⅲ)若在区间上是减函数,设关于x的方程的两个非零实数根为,。试问是否存在实数m,使得对任意满足条件的a及t恒成立?若存在,求m的取值范围;若不存在,请说明理由。
(I)当a=0时,f(x)的增区间为(-∞,+∞);
当a>0时,f(x)的增区间为(-∞,0),(a,+∞);f(x)的减区间为(0,a);
当a<0时,f(x)的增区间为(-∞,a),(0,+∞);f(x)的减区间为(a,0).
(II)-a<b<a3-a.(III)存在实数m满足条件,此时m∈[].
解析试题分析:(I)求导函数,对参数a进行讨论,利用导数的正负,确定函数的单调区间;
(II)确定f(x)的极大值为f(0)=a+b,f(x)的极小值为f(a)=a+b-a3,要使f(x)有三个不同的零点,则f(0)>0,f(a)<0,从而得证;
(III)先确定|x1-x2|=,并求得其最小值,假设存在实数m满足条件,则m2+tm+1≤()min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,从而可求m的范围.
解:(I)∵ ,
当a=0时,≥0,于是在R上单调递增;
当a>0时,x∈(0,a),,得在(0,a)上单调递减;
x∈(-∞,0)∪(a,+∞),,得在(-∞,0),(a,+∞)上单调递增;
当a<0时,,,得在(0,a)上单调递减;
x∈(-∞,a)∪(0,+∞),得在(-∞,a),(0,+∞)上单调递增.
综上所述:当a=0时,f(x)的增区间为(-∞,+∞);
当a>0时,f(x)的增区间为(-∞,0),(a,+∞);f(x)的减区间为(0,a);
当a<0时,f(x)的增区间为(-∞,a),(0,+∞);f(x)的减区间为(a,0).……3分
(II)当a>0时,由(I)得f(x)在(-∞,0),(a,+∞)上是增函数,f(x)在(0,a)上是减函数;则f(x)的极大值为f(0)=a+b,f(x)的极小值为f(a)=a+b-a3.
要使f(x)有三个不同的零点,则 即可得-a<b<a3-a.…8分
(III)由2x3-3ax2+a+b=x3-2ax2+3x+a+b,得x3-ax2-3x=0即x(x2-ax-3)=0,
由题意得x2-ax-3=0有两非零实数根x1,x2,则x1+x2=a,x1x2=-3,
即.∵ f (x)在[1,2]上是减函数,
∴ ≤0在[1,2]上恒成立,
其中x-a≤0即x≤a在[1,2]上恒成立,∴ a≥2.∴ ≥4.
假设存在实数m满足条件,则m2+tm+1≤()min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,
∴ 解得.
∴ 存在实数m满足条件,此时m∈[]. …………………14分
考点:本题主要考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,考查函数的极值与最值,考查恒成立问题,综合性强.
点评:解决该试题的关键是利用导数的正负对于函数单调性的影响得到函数单调区间,进而分析极值问题,以及构造函数的思想求证函数的最值,解决恒成立问题的运用。