题目内容
(2013•天津一模)已知数列{an}中a1=2,an+1=2-
,数列{bn}中bn=
,其中 n∈N*.
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)设Sn是数列{
bn}的前n项和,求
+
+…+
;
(Ⅲ)设Tn是数列{ (
)n•bn }的前n项和,求证:Tn<
.
1 |
an |
1 |
an-1 |
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)设Sn是数列{
1 |
3 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
(Ⅲ)设Tn是数列{ (
1 |
3 |
3 |
4 |
分析:(Ⅰ)由条件可得bn+1=
,再由bn=
,从而得到 bn+1-bn=
-
=1,由此证得结论
(Ⅱ)由(Ⅰ)可知bn=n,于是
=
=6(
-
),用裂项法求出
+
+…+
的值.
(Ⅲ)由(Ⅰ)可知 (
)n•bn=n•(
)n,求出Tn的解析式,可得
Tn 的解析式,用错位相减法求出Tn的解析式,
从而可得要证的不等式成立.
an |
an-1 |
1 |
an-1 |
an |
an-1 |
1 |
an-1 |
(Ⅱ)由(Ⅰ)可知bn=n,于是
1 |
Sn |
6 |
n(n+1) |
1 |
n |
1 |
n+1 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
(Ⅲ)由(Ⅰ)可知 (
1 |
3 |
1 |
3 |
1 |
3 |
从而可得要证的不等式成立.
解答:解:(Ⅰ)bn+1=
=
=
,而 bn=
,
∴bn+1-bn=
-
=1.n∈N*
∴{bn}是首项为b1=
=1,公差为1的等差数列.(5分)
(Ⅱ)由(Ⅰ)可知bn=n,
bn=
n. ∴Sn=
(1+2+…+n)=
,
于是
=
=6(
-
),
故有
+
+…+
=6(1-
+
-
+…+
-
)
=6(1-
)=
.(9分)
(Ⅲ)证明:由(Ⅰ)可知 (
)n•bn=n•(
)n,
则Tn=1•
+2•(
)2+…+n•(
)n.∴
Tn=1•(
)2+2•(
)3+…+(n-1)(
)n+n•(
)n+1.
则
Tn=
+(
)2+(
)3+…+(
)n-n•(
)n+1=
[1-(
)n]-n•(
)n+1,
∴Tn=
-
(
)n-1-
•(
)n<
. (14分)
1 |
an+1-1 |
1 | ||
1-
|
an |
an-1 |
1 |
an-1 |
∴bn+1-bn=
an |
an-1 |
1 |
an-1 |
∴{bn}是首项为b1=
1 |
a1-1 |
(Ⅱ)由(Ⅰ)可知bn=n,
1 |
3 |
1 |
3 |
1 |
3 |
n(n+1) |
6 |
于是
1 |
Sn |
6 |
n(n+1) |
1 |
n |
1 |
n+1 |
故有
1 |
S1 |
1 |
S2 |
1 |
Sn |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=6(1-
1 |
n+1 |
6n |
n+1 |
(Ⅲ)证明:由(Ⅰ)可知 (
1 |
3 |
1 |
3 |
则Tn=1•
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
则
2 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
2 |
1 |
3 |
1 |
3 |
∴Tn=
3 |
4 |
1 |
4 |
1 |
3 |
n |
2 |
1 |
3 |
3 |
4 |
点评:本题主要考查等差关系的确定,等比数列的前n项和公式的应用,用裂项法、错位相减法对数列求和,数列与不等式的综合应用,属于中档题.
练习册系列答案
相关题目