题目内容

(2013•天津一模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(I)求椭圆E的方程;
(Ⅱ)点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由:
(Ⅲ)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.
分析:(Ⅰ)由椭圆长轴长是短轴长的两倍设出椭圆的方程,把点C的坐标代入椭圆方程可求解b,则椭圆的方程可求;
(Ⅱ)设出P点的坐标,写出直线CP和DP的斜率,由点P在椭圆上得到P点横纵坐标的关系式,代入斜率乘积的表达式整理可得直线CP和DP的斜率之积为定值;
(Ⅲ)由直线l平行于CD,设出直线l的斜截式方程,和椭圆方程联立后求出弦MN的长度,由点到直线的距离公式求出C到MN的距离,代入面积公式后利用基本不等式求最大值,并求出使面积最大时的直线l的方程.
解答:解:(Ⅰ)∵2a=2•2b,∴a=2b.
设椭圆方程为
x2
2b2
+
y2
b2
=1

椭圆E过点C(2,1),
代入椭圆方程得
22
4b2
+
1
b2
=1
,解得b=
2
,则a=2
2

所以所求椭圆E的方程为
x2
8
+
y2
2
=1

(Ⅱ)依题意得D(-2,-1)在椭圆E上.
CP和DP的斜率KCP和KDP均存在.
设P(x,y),则kCP=
y-1
x-2
kDP=
y+1
x+2

kCPkDP=
y-1
x-2
y+1
x+2
=
y2-1
x2-4

又∵点P在椭圆E上,
x2
8
+
y2
2
=1
,∴x2=8-4y2,代入①得,
kCPkDP=
y2-1
x2-4
=
y2-1
8-4y2-4
=-
1
4

所以CP和DP的斜率KCP和KDP之积为定值-
1
4

(Ⅲ)CD的斜率为
1
2
,∵CD平行于直线l,∴设直线l的方程为y=
1
2
x+t

y=
1
2
x+t
x2
8
+
y2
2
=1

消去y,整理得x2+2tx+(2t2-4)=0.
设M(x1,y1),N(x2,y2).
△=4t2-4(2t2-4)=4(4-t2)>0
x1+x2=-2t
x1x2=2t2-4
,得|MN|=
1+k2
|x1-x2|=
1+(
1
2
)2
(x1+x2)2-4x1x2

=
5
4
4t2-4(2t2-4)
=
5
4-t2
(-2<t<2)

d=
|t|
1+
1
4
=
2|t|
5

所以,S=
1
2
|MN|•d=
1
2
5
4-t2
2|t|
5
=|t|•
4-t2
=
t2(4-t2)
4
2
=2

当且仅当t2=4-t2时取等号,即t2=2时取等号
所以△MNC面积的最大值为2.
此时直线l的方程y=
1
2
2
点评:本题考查了椭圆的标准方程,考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,训练了利用弦长公式求弦长,考查了利用基本不等式求最值,是有一定难度题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网