题目内容
(本题满分14分)一袋子中装着标有数字1,2,3的小球各2个,共6个球,现从袋子中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球的数字之和,求:
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量的概率分布及数学期望
.
解:(1)记“一次取出的3个小球上的数字互不相同的事件”为A,
则 …………………………4分
(2)由题意可能的取值为:4,5,6,7,8,且
,
,
,
,
.
所以随机变量的概率分布为:
| 4 | 5 | 6 | 7 | 8 |
| | | | | |
…………………………10分
. …………………………14分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
(本题满分14分) 一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
|
轿车A |
轿车B |
轿车C |
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1) 求z的值.
(2) 用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3) 用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.