题目内容
设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)的图象的最高点D的坐标为(2,
),由最高点运动到相邻的最低点F时,曲线与x轴相交于点E(6,0).
(1)求A、ω、φ的值;
(2)求函数y=g(x),使其图象与y=f(x)图象关于直线x=8对称.
2 |
(1)求A、ω、φ的值;
(2)求函数y=g(x),使其图象与y=f(x)图象关于直线x=8对称.
分析:(1)利用函数的最高点求出A,求出函数的周期,即可求ω,利用最高点结合φ的范围求出它的值;
(2)通过函数y=g(x),使其图象与y=f(x)图象关于直线x=8对称,利用对称点轨迹方程的求法求解即可.
(2)通过函数y=g(x),使其图象与y=f(x)图象关于直线x=8对称,利用对称点轨迹方程的求法求解即可.
解答:(本小题满分10分)
解:(1)最高点D(2,
) A=
由题意
=6-2=4,T=16,T=
,∴ω=
∴f(x)=
sin(
+φ),
∵过最高点D(2,
),∴
×2+φ=2kπ+
,φ=2kπ+
综上,A=
,ω=
,φ=
(2)设P(x,y)为y=g(x)上任一点,Q(xo,yo)是f(x)上关于x=8对称点.
y=yo,
=8 y=yo,xo=16-x 又yo=
sin(
x0+
)
y=
sin[
×(16-x)+
]=
sin(2π-
x+
)=
sin(-
x+
)
解:(1)最高点D(2,
2 |
2 |
由题意
T |
4 |
2π |
ω |
π |
8 |
2 |
π |
8 |
∵过最高点D(2,
2 |
π |
8 |
π |
2 |
π |
4 |
综上,A=
2 |
π |
8 |
π |
4 |
(2)设P(x,y)为y=g(x)上任一点,Q(xo,yo)是f(x)上关于x=8对称点.
y=yo,
x+x0 |
2 |
2 |
π |
8 |
π |
4 |
y=
2 |
π |
8 |
π |
4 |
2 |
π |
8 |
π |
4 |
2 |
π |
8 |
π |
4 |
点评:本题考查三角函数的参数的含义,函数解析式的求法,考查转化思想与计算能力.
练习册系列答案
相关题目