题目内容
(2013•湖南)设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1•Sn,n∈N*
(Ⅰ)求a1,a2,并求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和.
(Ⅰ)求a1,a2,并求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和.
分析:(Ⅰ)令n=1和2,代入所给的式子求得a1和a2,当n≥2时再令n=n-1得到2an-1-1=Sn-1,两个式子相减得an=2an-1,判断出此数列为等比数列,进而求出通项公式;
(Ⅱ)由(Ⅰ)求出nan=n•2n-1,再由错位相减法求出此数列的前n项和.
(Ⅱ)由(Ⅰ)求出nan=n•2n-1,再由错位相减法求出此数列的前n项和.
解答:解:(Ⅰ)令n=1,得2a1-a1=a12,即a1=a12,
∵a1≠0,∴a1=1,
令n=2,得2a2-1=1+a2,解得a2=2,
当n≥2时,由2an-1=Sn得,2an-1-1=Sn-1,
两式相减得2an-2an-1=an,即an=2an-1,
∴数列{an}是首项为1,公比为2的等比数列,
∴an=2n-1,即数列{an}的通项公式an=2n-1;
(Ⅱ)由(Ⅰ)知,nan=n•2n-1,设数列{nan}的前n项和为Tn,
则Tn=1+2×2+3×22+…+n×2n-1,①
2Tn=1×2+2×22+3×23+…+n×2n,②
①-②得,-Tn=1+2+22+…+2n-1-n•2n
=2n-1-n•2n,
∴Tn=1+(n-1)2n.
∵a1≠0,∴a1=1,
令n=2,得2a2-1=1+a2,解得a2=2,
当n≥2时,由2an-1=Sn得,2an-1-1=Sn-1,
两式相减得2an-2an-1=an,即an=2an-1,
∴数列{an}是首项为1,公比为2的等比数列,
∴an=2n-1,即数列{an}的通项公式an=2n-1;
(Ⅱ)由(Ⅰ)知,nan=n•2n-1,设数列{nan}的前n项和为Tn,
则Tn=1+2×2+3×22+…+n×2n-1,①
2Tn=1×2+2×22+3×23+…+n×2n,②
①-②得,-Tn=1+2+22+…+2n-1-n•2n
=2n-1-n•2n,
∴Tn=1+(n-1)2n.
点评:本题考查了数列an与Sn之间的转化,以及由错位相减法求出数列的前n项和的应用.
练习册系列答案
相关题目