题目内容

(任选一题)
(1)已知α、β为实数,给出下列三个论断:
①|α-β|≤|α+β|②|α+β|>5  ③|α|>2
2
,|β|>2
2

以其中的两个论断为条件,另一个论断为结论,写出你认为正确的命题是______.
(2)设{an}和{bn}都是公差不为零的等差数列,且
lim
n→∞
an
bn
=2
,则
lim
n→∞
b1+b2+…+bn
na2n
的值为______.
(1)由①|α-β|≤|α+β|知,α,β同号,故|α+β|=|α|+|β|,
又由③|α|>2
2
,|β|>2
2
可得|α+β|>4
2

又4
2
≈5.6>5,
所以有|α+β|>5成立,
综上知①③推出②,
故答案为①③?②.
(2)设{an}和{bn}的公差分别为d1 和d2
lim
n→∞
an
bn
=
lim
n→∞
a1+(n-1)d1
b1+(n-1)d2
=
d1
d2
=2,∴d1=2d2
lim
n→∞
b1+b2+…+bn
na2n
=
lim
n→∞
nb1+
n(n-1)
2
d2
n[a1+(2n-1)d1 ]
=
d2
2
d1
=
d2
4d1
=
1
8

故答案为:
1
8
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网