题目内容
过椭圆![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_ST/0.png)
A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_ST/1.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_ST/2.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_ST/3.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_ST/4.png)
【答案】分析:根据已知中椭圆的标准方程,我们可以求出A,B两点的坐标,结合双曲线的焦点在x轴上,对称中心在坐标原点且两条渐近线分别过A、B两点,将A,B坐标代入即可求出双曲线的离心率.
解答:解:由已知中椭圆的标准方程为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/0.png)
我们可以求出A(
,1),B(
,-1),
设双曲线为
(a>0,b>0),
渐近线方程为y=±
x,因为A、B在渐近线上,
所以1=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/6.png)
∴
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/8.png)
∴e=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/10.png)
故选B
点评:本题考查的知识点是椭圆及双曲线的几何特征,其中求出AB的坐标,并根据双曲线的性质,求出双曲线实半轴长a和虚半轴长b的比例关系是解答本题的关键.
解答:解:由已知中椭圆的标准方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/0.png)
我们可以求出A(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/2.png)
设双曲线为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/3.png)
渐近线方程为y=±
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/4.png)
所以1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/6.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/8.png)
∴e=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222837799704431/SYS201311012228377997044008_DA/10.png)
故选B
点评:本题考查的知识点是椭圆及双曲线的几何特征,其中求出AB的坐标,并根据双曲线的性质,求出双曲线实半轴长a和虚半轴长b的比例关系是解答本题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目