ÌâÄ¿ÄÚÈÝ
14£®ÒÑ֪ƽÃæÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$£¬Âú×ã$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$£¬ÇÒ$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ135¡ãÇÒ$\overrightarrow{c}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ120¡ã£¬|$\overrightarrow{c}$|=2£¬Ôò|$\overrightarrow{a}$|=$\sqrt{6}$£®·ÖÎö Éè$\overrightarrow{b}$=£¨m£¬0£©£¬ÓÉ$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ135¡ãÇÒ$\overrightarrow{c}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ120¡ã£¬|$\overrightarrow{c}$|=2£¬¿ÉÈ¡$\overrightarrow{a}$=$£¨-\frac{\sqrt{2}}{2}r£¬\frac{\sqrt{2}}{2}r£©$£¬$|\overrightarrow{a}|$=r.$\overrightarrow{c}$=$£¨-1£¬-\sqrt{3}£©$£¬ÀûÓÃ$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£ºÉè$\overrightarrow{b}$=£¨m£¬0£©£¬¡ß$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ135¡ãÇÒ$\overrightarrow{c}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ120¡ã£¬|$\overrightarrow{c}$|=2£¬
¡à$\overrightarrow{a}$=$£¨-\frac{\sqrt{2}}{2}r£¬\frac{\sqrt{2}}{2}r£©$£¬$|\overrightarrow{a}|$=r£®
$\overrightarrow{c}$=$£¨-1£¬-\sqrt{3}£©$£¬
¡ß$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$£¬
¡à$\frac{\sqrt{2}}{2}r-\sqrt{3}$=0£¬
½âµÃ$r=\sqrt{6}$£®
¹Ê´ð°¸Îª£º$\sqrt{6}$£®
µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄÕý½»·Ö½â¡¢ÏòÁ¿µÄÄ£µÄ¼ÆË㹫ʽ¡¢ÏòÁ¿µÄ×ø±êÔËË㣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | $\frac{x^2}{4}$-$\frac{y^2}{12}$=1 | B£® | $\frac{x^2}{2}$-$\frac{y^2}{6}$=1 | C£® | $\frac{x^2}{4}$-$\frac{y^2}{3}$=1 | D£® | $\frac{x^2}{2}$-y2=1 |
A£® | $\frac{4}{5}$ | B£® | $\frac{3}{5}$ | C£® | -$\frac{3}{5}$ | D£® | -$\frac{4}{5}$ |
A£® | -$\frac{5}{13}$ | B£® | $\frac{5}{13}$ | C£® | -$\frac{12}{13}$ | D£® | $\frac{12}{13}$ |
A£® | 1Ìõ | B£® | 2Ìõ | C£® | 3Ìõ | D£® | 4Ìõ |
A£® | {£¨x£¬y£©|£¨x-2y£©£¨y-1£©=0} | B£® | {£¨x£¬y£©|£¨x-2y£©£¨y-1£©=0£¬x¡Ù2} | ||
C£® | {£¨2£¬1£©} | D£® | ∅ |