题目内容
如图,在底面为直角梯形的四棱锥中
,
平面
,
,
,
.
⑴求证:;
⑵求直线与平面
所成的角;
⑶设点在棱
上,
,若
∥平面
,求
的值.
【命题意图】本小题将直四棱锥的底面设计为梯形,考查平面几何的基础知识.同时题目指出一条侧棱与底面垂直,搭建了空间直角坐标系的基本架构.本题通过分层设计,考查了空间平行、垂直,以及线面成角等知识,考查学生的空间想象能力、推理论证能力和运算求解能力.
【试题解析】解:【方法一】(1)证明:由题意知 则
(4分)
(2)∵∥
,又
平面
.
∴平面平面
.
过作
//
交
于
过点作
交
于
,则
∠为直线
与平面
所成的角.
![]() | ![]() | ||
在Rt△中,∠
,
,
∴,∴∠
.
即直线与平面
所成角为
. (8分)
(3)连结,∵
∥
,∴
∥平面
.
又∵∥平面
,
∴平面∥平面
,∴
∥
.
又∵
∴∴
,即
(12分)
【方法二】如图,在平面ABCD内过D作直线DF//AB,交BC于F,分别以DA、DF、DP所在的直线为x、y、z轴建立空间直角坐标系.
(1)设,则
,
∵,∴
. (4分)
(2)由(1)知.
由条件知A(1,0,0),B(1,,0),
.
![]() |
设,
则
即直线
为
. (8分)
(3)由(2)知C(-3,,0),记P(0,0,a),则
,
,
,
,
而,所以
,
=
设为平面PAB的法向量,则
,即
,即
.
进而得
,
由,得
∴
(12分)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目