题目内容
【题目】把编号为1,2,3,4,5的五个大小、形状相同的小球,随机放入编号为1,2,3,4,5的五个盒子里.每个盒子里放入一个小球.
(1)求恰有两个球的编号与盒子的编号相同的概率;
(2)设恰有个小球的编号与盒子编号相同,求随机变量的分布列与期望.
【答案】(1)(2)见解析,数学期望为1
【解析】
满足条件的放法共有种,恰有两个球的编号与盒子的编号相同的放法有种,由古典概率公式可得所求概率.
写出随机变量X的可能值以及取各值的概率,即可得到分布列,再利用公式求期望即可.
(1)记恰有2个小球与盒子编号相同为事件.
将5个小球随机放入五个盒子中,每个盒子放一个共有即120种不同的放法.
事件共有种放法,所以.
答:恰有2个盒子与小球编号相同的概率为.
(2)随机变量的可能值为0,1,2,3,5.
,,
,,.
0 | 1 | 2 | 3 | 5 | |
所以.
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、劳动能力情况.子女受教育情况、危旧房情况、患病情况等进行调查.并把调查结果转化为各户的贫困指标.将指标按照,,,,分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”;当时,认定该户为“亟待帮助户".已知此次调查中甲村的“绝对贫困户”占甲村贫困户的.
(1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与村落有关:
甲村 | 乙村 | 总计 | |
绝对贫困户 | |||
相对贫困户 | |||
总计 |
(2)某干部决定在这两村贫困指标处于的贫困户中,随机选取户进行帮扶,用表示所选户中“亟待帮助户”的户数,求的分布列和数学期望.
附:,其中.
【题目】为大力提倡“厉行节约,反对浪费”,衡阳市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如右列联表及附表:经计算:参照附表,得到的正确结论是( )
做不到“光盘”行动 | 做到“光盘”行动 | |
男 | 45 | 10 |
女 | 30 | 15 |
k |
A.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关”
C.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关”
D.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关”