题目内容

设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
【答案】分析:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.
(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.
解答:解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p
点A到准线l的距离
∵△ABD的面积S△ABD=
=
解得p=2,
∴圆F的方程为x2+(y-1)2=8.
(2)由题设,则
∵A,B,F三点在同一直线m上,
又AB为圆F的直径,故A,B关于点F对称.
由点A,B关于点F对称得:
得:,直线切点
直线
坐标原点到m,n距离的比值为
点评:本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网