题目内容
已知定义在R上的函数f(x)是奇函数,且f(2)=0,当x>0时有
,则不等式x2•f(x)>0的解集是
- A.(-2,0)∪(2,+∞)
- B.(-∞,-2)∪(0,2)
- C.(-2,0)∪(0,2)
- D.(-2,2)∪(2,+∞)
B
分析:首先根据商函数求导法则,把
化为[
]′<0;然后利用导函数的正负性,可判断函数y=
在(0,+∞)内单调递减;再由f(2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(-∞,0)内的正负性.则x2f(x)>0?f(x)>0的解集即可求得.
解答:因为当x>0时,有
恒成立,即[
]′<0恒成立,
所以
在(0,+∞)内单调递减.
因为f(2)=0,
所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案为(-∞,-2)∪(0,2).
故选B.
点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.
分析:首先根据商函数求导法则,把
解答:因为当x>0时,有
所以
因为f(2)=0,
所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案为(-∞,-2)∪(0,2).
故选B.
点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.
练习册系列答案
相关题目
已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=( )
| A、0 | B、2013 | C、3 | D、-2013 |