题目内容
已知函数f(x)=(x-2)2,f′(x)是函数f(x)的导函数,设a1=3,an+1=an-f(an) | f′(an) |
(I)证明:数列{an-2}是等比数列,并求出数列{an}的通项公式;
(II)令bn=nan,求数列{bn}的前n项和Sn.
分析:(I)f′(x)=2(x-2),由an+1=an-
,可得an+1-
=
an+1,an+1-2=(
an+1)-2=
an -1=
(an-2),由此能够证明数列{an-2}是等比数列,并能求出数列{an}的通项公式.
(Ⅱ)由题意bn=nan=
+2n,则Sn=(
+
+
+…+
)+n2+n,令Tn=
+
+
+…+
,由错位相减法能够求出Tn=4(1-
) -
=4-
,所以Sn=Tn+n2+n=4-
+n2+n.
f(an) |
f′(an) |
(an-2)2 |
2(an-2) |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(Ⅱ)由题意bn=nan=
n |
2n-1 |
1 |
20 |
2 |
2 |
3 |
22 |
n |
2n-1 |
1 |
20 |
2 |
2 |
3 |
22 |
n |
2n-1 |
1 |
2n |
2n |
2n |
n+2 |
2n-1 |
n+2 |
2n-1 |
解答:解:(I)f′(x)=2(x-2),由an+1=an-
,
可得an+1-
=
an+1,
an+1-2=(
an+1)-2=
an -1=
(an-2),
∴{an-2}是以a1-2=1为首项,公比为
的等比数列,
∴an-2=(a1-2) (
)n-1,
∴an=(
)n-1+2.
(Ⅱ)由题意bn=nan=
+2n,
则Sn=(
+
+
+…+
)+n2+n(9分)
令Tn=
+
+
+…+
①
①×
得:
Tn=
+
+
+…+
②
①-②得:
Tn=1+
+
+…+
-
=
-
=2(1-
)-
,
即Tn=4(1-
) -
=4-
(12分)
所以Sn=Tn+n2+n=4-
+n2+n(13分)
f(an) |
f′(an) |
可得an+1-
(an-2)2 |
2(an-2) |
1 |
2 |
an+1-2=(
1 |
2 |
1 |
2 |
1 |
2 |
∴{an-2}是以a1-2=1为首项,公比为
1 |
2 |
∴an-2=(a1-2) (
1 |
2 |
∴an=(
1 |
2 |
(Ⅱ)由题意bn=nan=
n |
2n-1 |
则Sn=(
1 |
20 |
2 |
2 |
3 |
22 |
n |
2n-1 |
令Tn=
1 |
20 |
2 |
2 |
3 |
22 |
n |
2n-1 |
①×
1 |
2 |
1 |
2 |
1 |
2 |
2 |
22 |
3 |
23 |
n |
2n |
①-②得:
1 |
2 |
1 |
2 |
1 |
22 |
1 |
2n-1 |
n |
2n |
=
1-
| ||
1-
|
n |
2n |
1 |
2n |
n |
2n |
即Tn=4(1-
1 |
2n |
2n |
2n |
n+2 |
2n-1 |
所以Sn=Tn+n2+n=4-
n+2 |
2n-1 |
点评:第(I)题考查等比数列的证明和通项公式的求法,解题时要注意合理地构造数列;第(II)题考查数列前n项和的求法,解题时要注意错位相减法的合理运用.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
1 |
f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|