ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=ax+b£¬µ±x¡Ê[a1£¬b1]ʱֵÓòΪ[a2£¬b2]£¬µ±x¡Ê[a2£¬b2]ʱֵÓòΪ[a3£¬b3]£¬µ±x¡Ê[an-1£¬bn-1]ʱֵÓòΪ[an£¬bn]¡ÆäÖÐa¡¢bΪ³£Êý£¬a1=0£¬b1=1
£¨1£©Èôa=1£¬b=2£¬ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£®
£¨2£©Èôa£¾0£¬a¡Ù1£¬ÒªÊ¹ÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬ÇóbµÄÖµ£®
£¨3£©Èôa£¾0£¬ÉèÊýÁÐ{an}ºÍ{bn}µÄÇ°nÏîºÍ·Ö±ðΪSnºÍTn£¬ÇóTn-SnµÄÖµ£®
£¨1£©Èôa=1£¬b=2£¬ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£®
£¨2£©Èôa£¾0£¬a¡Ù1£¬ÒªÊ¹ÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬ÇóbµÄÖµ£®
£¨3£©Èôa£¾0£¬ÉèÊýÁÐ{an}ºÍ{bn}µÄÇ°nÏîºÍ·Ö±ðΪSnºÍTn£¬ÇóTn-SnµÄÖµ£®
·ÖÎö£º£¨1£©ÓÉa=1£¬b=2£¬¿ÉµÃf£¨x£©=x+2£®º¯Êýf£¨x£©µ¥µ÷µÝÔö£¬ÇÒµ±x¡Ê[an-1£¬bn-1]ʱֵÓòΪ[an£¬bn]£®
¿ÉµÃµ±n¡Ý2ʱ£¬an=f£¨an-1£©=an-1+2£¬bn=f£¨bn-1£©=bn-1+2£¬ÓÉa1¼°b1£¬ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¿ÉµÃµ±n¡Ý2ʱ£¬bn=f£¨bn-1£©=abn-1+b£¬£¨*£©
ÒòΪµ±bn=bn-1ʱ£¬bn=1£¬b=1-a£¬¹Êb¡Ù1-a£¨a£¾0£¬a¡Ù1£©£¬ÔÙÀûÓÃÊýÁÐ{bn}µÄ¹«±ÈΪq£¬b1=1£¬¶ÔÓÚ£¨*£©·Ö±ðÈ¡n=2£¬3¿ÉµÃ
¼´¿É½âµÃbµÄÖµ£®
£¨3£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¿ÉµÃµ±n¡Ý2ʱ£¬an=f£¨an-1£©=aan-1+b£¬bn=f£¨bn-1£©=abn-1+b£¬
¢Ùµ±a=1ʱ£¬an=0+£¨n-1£©•b£¬bn=1+£¨n-1£©b£¬ÓÉbn-an=1¼´¿ÉµÃ³öTn-Sn£®
¢Úµ±a¡Ù1ʱ£¬ÓÉan+
=a(an-1+
)£¬bn+
=a(bn-1+
)£¬
¿ÉµÃan+
=
•an-1£¬bn+
=(1+
)•an-1£¬¿ÉµÃbn-an=an-1£¬ÓÚÊÇTn-Sn=1+a+a2+¡+an-1£®
¿ÉµÃµ±n¡Ý2ʱ£¬an=f£¨an-1£©=an-1+2£¬bn=f£¨bn-1£©=bn-1+2£¬ÓÉa1¼°b1£¬ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¿ÉµÃµ±n¡Ý2ʱ£¬bn=f£¨bn-1£©=abn-1+b£¬£¨*£©
ÒòΪµ±bn=bn-1ʱ£¬bn=1£¬b=1-a£¬¹Êb¡Ù1-a£¨a£¾0£¬a¡Ù1£©£¬ÔÙÀûÓÃÊýÁÐ{bn}µÄ¹«±ÈΪq£¬b1=1£¬¶ÔÓÚ£¨*£©·Ö±ðÈ¡n=2£¬3¿ÉµÃ
|
£¨3£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¿ÉµÃµ±n¡Ý2ʱ£¬an=f£¨an-1£©=aan-1+b£¬bn=f£¨bn-1£©=abn-1+b£¬
¢Ùµ±a=1ʱ£¬an=0+£¨n-1£©•b£¬bn=1+£¨n-1£©b£¬ÓÉbn-an=1¼´¿ÉµÃ³öTn-Sn£®
¢Úµ±a¡Ù1ʱ£¬ÓÉan+
b |
a-1 |
b |
a-1 |
b |
a-1 |
b |
a-1 |
¿ÉµÃan+
b |
a-1 |
b |
a-1 |
b |
a-1 |
b |
a-1 |
½â´ð£º½â£º£¨1£©¡ßa=1£¬b=2£¬¡àf£¨x£©=x+2£¬
¡ßº¯Êýf£¨x£©µ¥µ÷µÝÔö£¬ÇÒµ±x¡Ê[an-1£¬bn-1]ʱֵÓòΪ[an£¬bn]£®
¡àµ±n¡Ý2ʱ£¬an=f£¨an-1£©=an-1+2£¬bn=f£¨bn-1£©=bn-1+2£¬
ÓÖa1=0£¬b1=1£¬
¡àan=0+£¨n-1£©¡Á2=2n-2£¬bn=1+£¨n-1£©¡Á2=2n-1£®
¼´an=2n-2£¬bn=2n-1£®
£¨2£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¡àµ±n¡Ý2ʱ£¬bn=f£¨bn-1£©=abn-1+b£¬£¨*£©
µ±bn=bn-1ʱ£¬bn=1£¬b=1-a£¬
Òò´Ëb¡Ù1-a£¨a£¾0£¬a¡Ù1£©£®
ÉèÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÓÖb1=1£¬¶ÔÓÚ£¨*£©·Ö±ðÈ¡n=2£¬3¿ÉµÃ
»¯Îªb£¨a+b-1£©=0£¬¶øa+b-1¡Ù0£¬¡àb=0£®
¹Êµ±b=0ʱÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ®
Òò´Ëb=0£®
£¨3£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬
¡àµ±n¡Ý2ʱ£¬an=f£¨an-1£©=aan-1+b£¬bn=f£¨bn-1£©=abn-1+b£¬
¢Ùµ±a=1ʱ£¬an=0+£¨n-1£©•b£¬bn=1+£¨n-1£©b£¬
¡àTn-Sn=1+1+¡+1=n£®
¢Úµ±a¡Ù1ʱ£¬ÓÉan+
=a(an-1+
)£¬bn+
=a(bn-1+
)£¬
¿ÉµÃan+
=
•an-1£¬bn+
=(1+
)•an-1£¬
¡à¿ÉµÃbn-an=an-1£¬
¡àTn-Sn=1+a+a2+¡+an-1=
£®
×ÛÉÏ¿ÉÖª£ºµ±a=1ʱ£¬Tn-Sn=n£»
µ±a¡Ù1ʱ£¬Tn-Sn=
£®
¡ßº¯Êýf£¨x£©µ¥µ÷µÝÔö£¬ÇÒµ±x¡Ê[an-1£¬bn-1]ʱֵÓòΪ[an£¬bn]£®
¡àµ±n¡Ý2ʱ£¬an=f£¨an-1£©=an-1+2£¬bn=f£¨bn-1£©=bn-1+2£¬
ÓÖa1=0£¬b1=1£¬
¡àan=0+£¨n-1£©¡Á2=2n-2£¬bn=1+£¨n-1£©¡Á2=2n-1£®
¼´an=2n-2£¬bn=2n-1£®
£¨2£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¡àµ±n¡Ý2ʱ£¬bn=f£¨bn-1£©=abn-1+b£¬£¨*£©
µ±bn=bn-1ʱ£¬bn=1£¬b=1-a£¬
Òò´Ëb¡Ù1-a£¨a£¾0£¬a¡Ù1£©£®
ÉèÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÓÖb1=1£¬¶ÔÓÚ£¨*£©·Ö±ðÈ¡n=2£¬3¿ÉµÃ
|
»¯Îªb£¨a+b-1£©=0£¬¶øa+b-1¡Ù0£¬¡àb=0£®
¹Êµ±b=0ʱÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ®
Òò´Ëb=0£®
£¨3£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬
¡àµ±n¡Ý2ʱ£¬an=f£¨an-1£©=aan-1+b£¬bn=f£¨bn-1£©=abn-1+b£¬
¢Ùµ±a=1ʱ£¬an=0+£¨n-1£©•b£¬bn=1+£¨n-1£©b£¬
¡àTn-Sn=1+1+¡+1=n£®
¢Úµ±a¡Ù1ʱ£¬ÓÉan+
b |
a-1 |
b |
a-1 |
b |
a-1 |
b |
a-1 |
¿ÉµÃan+
b |
a-1 |
b |
a-1 |
b |
a-1 |
b |
a-1 |
¡à¿ÉµÃbn-an=an-1£¬
¡àTn-Sn=1+a+a2+¡+an-1=
an-1 |
a-1 |
×ÛÉÏ¿ÉÖª£ºµ±a=1ʱ£¬Tn-Sn=n£»
µ±a¡Ù1ʱ£¬Tn-Sn=
an-1 |
a-1 |
µãÆÀ£ºÊìÁ·ÕÆÎÕÒ»´Îº¯ÊýµÄµ¥µ÷ÐÔ¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäÇ°nÏîºÍ¹«Ê½¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿