题目内容
2.有如下几个结论:①若函数y=f(x)满足:$f(x)=-\frac{1}{{f({x+1})}}$,则2为y=f(x)的一个周期,
②若函数y=f(x)满足:f(2x)=f(2x+1),则$\frac{1}{2}$为y=f(x)的一个周期,
③若函数y=f(x)满足:f(x+1)=f(1-x),则y=f(x+1)为偶函数,
④若函数y=f(x)满足:f(x+3)+f(1-x)=2,则(3,1)为函数y=f(x-1)的图象的对称中心.
正确的结论为①③(填上正确结论的序号)
分析 根据已知分析函数的周期性,可判断①②;分析函数的奇偶性,可判断③;分析函数的对称性,可判断④.
解答 解:①$f(x)=-\frac{1}{{f({x+1})}}$,
∴f(x+1)=-$\frac{1}{f(x+2)}$,
∴f(x)=f(x+2),则2为y=f(x)的一个周期,故正确;
②f(2x)=f(2x+1),
令t=2x,
∴f(t)=f(t+1),
∴f(x)=f(x+1),则1为y=f(x)的一个周期,故错误;
③y=f(x+1)为偶函数,
∴f(-x+1)=f(x+1),故正确;
④若函数y=f(x)满足:f(x+3)+f(1-x)=2,
令t=x+3,则x=t-3,1-x=4-t,
即f(t)+f(4-x)=2,
即函数y=f(x)的图象关于(2,1)点对称,
则函数y=f(x-1)的图象的对称中心为(0,0),故错误;
故正确的结论为:①③
故答案为:①③
点评 本题考查的知识点是函数的周期性,函数的奇偶性,函数的对称性,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关题目
17.已知不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+2y-4≤0}\end{array}\right.$表示的平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为( )
A. | (x-1)2+(y-2)2=5 | B. | (x-2)2+(y-1)2=8 | C. | (x-4)2+(y-1)2=6 | D. | (x-2)2+(y-1)2=5 |
7.已知f(x)=log2x,则f-1(x)满足( )
A. | f-1(2x)=2f-1(x) | B. | f-1(2x)=$\frac{1}{2}$f-1(x) | C. | f-1(2x)=[f-1(x)]2 | D. | f-1(2x)=[f-1(x)]${\;}^{\frac{1}{2}}$ |
14.已知数列{an}的前n项和${S_n}={n^2}$,则a5的值为( )
A. | 9 | B. | 11 | C. | 15 | D. | 25 |
11.已知函数f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R),若曲线y=f(x)在点P(1,f(1))处的切线与直线x+3y+1=0垂直,则实数a的值为( )
A. | -1 | B. | 1 | C. | -$\frac{1}{6}$ | D. | $\frac{1}{6}$ |