题目内容
2003 年10 月15 日9 时,“神舟五号”载人飞船发射升空,于9 时9 分50 秒准确进入预定轨道,开始巡天飞行.该轨道是以地球的中心F2 为一个焦点的椭圆.选取坐标系如图所示,椭圆中心在原点,近地点A 距地面200 km ,远地点B 距地面350 km .已知地球半径R= 6 371 km.
(1)求飞船飞行的椭圆轨道的方程;
(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约6×105km,问飞船巡天飞行平均速度是多少?(结果精确到1 km/s )
(1)求飞船飞行的椭圆轨道的方程;
(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约6×105km,问飞船巡天飞行平均速度是多少?(结果精确到1 km/s )
解:(1)设椭圆的方程为
由题设条件得a-c=|OA|-|OF2|=|F2A|=6371+200=6571,
a+c=|OB|+|OF2|=|F2B|=6371+350=6721,
解得a=6646,c=75.
所以a2=44169316,b2=a2-c2=(a+c)(a-c)=44163 691.
所以椭圆的方程为
(2)从15日9时到16日6时共21个小时,合21×3600秒,减去开始的9分50秒,即9×60+50=590(s),再减去最后多计的1分钟,共计590+60=650(s),飞船巡天飞行时间是21×3 600-650=74950(s),平均速度是(km/s).
所以飞船巡天飞行的平均速度是8 km/s.
由题设条件得a-c=|OA|-|OF2|=|F2A|=6371+200=6571,
a+c=|OB|+|OF2|=|F2B|=6371+350=6721,
解得a=6646,c=75.
所以a2=44169316,b2=a2-c2=(a+c)(a-c)=44163 691.
所以椭圆的方程为
(2)从15日9时到16日6时共21个小时,合21×3600秒,减去开始的9分50秒,即9×60+50=590(s),再减去最后多计的1分钟,共计590+60=650(s),飞船巡天飞行时间是21×3 600-650=74950(s),平均速度是(km/s).
所以飞船巡天飞行的平均速度是8 km/s.
练习册系列答案
相关题目