题目内容
【题目】如图①,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图②.
(1)求证:AM∥平面BEC;
(2)求点D到平面BEC的距离.
【答案】(1)证明见解析(2)
【解析】
取EC的中点为N,连接MN,BN,利用中位线可知四边形ABNM为平行四边形,可得BN∥AM,由线面平行的判定定理即可证明(2)根据又VE-BCD=VD-BCE,由等体积法求出点到面的距离即可.
证明:取EC的中点为N,连接MN,BN.
在△EDC中,M,N分别为ED,EC的中点,所以MN∥CD,且MN=CD.由已知AB∥CD,AB=CD,得MN∥AB,且MN=AB.故四边形ABNM为平行四边形,因此BN∥AM.
又因为BN平面BEC,且AM平面BEC,所以AM∥平面BEC.
(2)解:由已知得BC⊥BD,BC⊥DE,又BD∩DE=D,所以BC⊥平面BDE.而BE平面BDE,所以BC⊥BE.
故S△BCE=BE·BC=××=.
S△BCD=BD·BC=××=1.
又VE-BCD=VD-BCE,设点D到平面BEC的距离为h,
则S△BCD·DE=S△BCE·h,所以h==.
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别 | 分组 | 频数 | 频率 |
第1组 | 8 | 0.16 | |
第2组 | ▆ | ||
第3组 | 20 | 0.40 | |
第4组 | ▆ | 0.08 | |
第5组 | 2 | ||
合计 | ▆ | ▆ |
(1)求的值;
(2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.