题目内容
【题目】函数,且恒成立.
(1)求实数的集合;
(2)当时,判断图象与图象的交点个数,并证明.
(参考数据:)
【答案】(1);(2)2个,证明见解析
【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;
(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.
(1)的定义域为,因为,
1°当时,在上单调递减,时,使得,与条件矛盾;
2°当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,
若;
若;而时,,要使恒成立,
故.
(2)原问题转化为方程实根个数问题,
当时,图象与图象有且仅有2个交点,理由如下:
由,即,令,
因为,所以是的一根;,
1°当时,,
所以在上单调递减,,即在上无实根;
2°当时,,
则在上单调递递增,又,
所以在上有唯一实根,且满足,
①当时,在上单调递减,此时在上无实根;
②当时,在上单调递增,
,故在上有唯一实根.
3°当时,由(1)知,在上单调递增,
所以,
故,所以在上无实根.
综合1°,2°,3°,故有两个实根,即图象与图象有且仅有2个交点.
【题目】新型冠状病毒肺炎疫情爆发以来,疫情防控牵挂着所有人的心. 某市积极响应上级部门的号召,通过沿街电子屏、微信公众号等各种渠道对此战“疫”进行了持续、深入的悬窗,帮助全体市民深入了解新冠状病毒,增强战胜疫情的信心. 为了检验大家对新冠状病毒及防控知识的了解程度,该市推出了相关的知识问卷,随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制频率分布直方图如图所示,把年龄落在区间和内的人分别称为“青少年人”和“中老年人”. 经统计“青少年人”和“中老年人”的人数比为19:21. 其中“青少年人”中有40人对防控的相关知识了解全面,“中老年人”中对防控的相关知识了解全面和不够全面的人数之比是2:1.
(1)求图中的值;
(2)现采取分层抽样在和中随机抽取8名市民,从8人中任选2人,求2人中至少有1人是“中老年人”的概率是多少?
(3)根据已知条件,完成下面的2×2列联表,并根据统计结果判断:能够有99.9%的把握认为“中老年人”比“青少年人”更加了解防控的相关知识?
了解全面 | 了解不全面 | 合计 | |
青少年人 | |||
中老年人 | |||
合计 |
附表及公式:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |