题目内容

(I)A为△ABC的内角,则sinA+cosA的取值范围是________.
(II)给定两个长度为1的平面向量数学公式数学公式,它们的夹角为120°.
如图所示,点C在以O为圆心的圆弧数学公式上变动.若数学公式,其中x,y∈R,则x+y的最大值是________.

    2
分析:(I)根据辅助角公式,我们可以将sinA+cosA化为正弦型函数的形式,根据A为△ABC的内角,即可得到sinA+cosA的取值范围;
(II)∠AOC=α,我们可以得到x,y的解析式(含参数α),根据辅助角公式,我们可以得到x+y的表达式,然后根据三角函数的性质,即可得到x+y的最大值.
解答:(I)∵sinA+cosA=sin(A+
又∵A∈(0,π)
sin(A+)∈
(II)设∠AOC=α


∴x+y=2[cosα+cos(120°-α)]=cosα+sinα=2sin(x+)≤2
故x+y的最大值是 2
故答案为:,2
点评:本题考查的知识点是正弦函数的值域,向量的加法及其几何意义,熟练掌握辅助角公式及正弦型函数的性质是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网