ÌâÄ¿ÄÚÈÝ
£¨1£©Èô¶¯µãPµ½¶¨µãF(2
£¬0)µÄ¾àÀëÓëµ½¶¨Ö±Ïßl£ºx=
µÄ¾àÀëÖ®±ÈΪ
£¬ÇóÖ¤£º¶¯µãPµÄ¹ì¼£ÊÇÍÖÔ²£»
£¨2£©É裨1£©ÖÐÍÖÔ²¶ÌÖáµÄÉ϶¥µãΪA£¬ÊÔÕÒ³öÒ»¸öÒÔµãAΪֱ½Ç¶¥µãµÄµÈÑüÖ±½Ç¡÷ABC£¬²¢Ê¹µÃB¡¢CÁ½µãÒ²ÔÚÍÖÔ²ÉÏ£¬²¢Çó³ö¡÷ABCµÄÃæ»ý£»
£¨3£©¶ÔÓÚÍÖÔ²
+y2=1£¨³£Êýa£¾1£©£¬ÉèÍÖÔ²¶ÌÖáµÄÉ϶¥µãΪA£¬ÊÔÎÊ£ºÒÔµãAΪֱ½Ç¶¥µã£¬ÇÒB¡¢CÁ½µãÒ²ÔÚÍÖÔ²ÉϵĵÈÑüÖ±½Ç¡÷ABCÓм¸¸ö£¿ËµÃ÷ÀíÓÉ£®
2 |
9
| ||
4 |
2
| ||
3 |
£¨2£©É裨1£©ÖÐÍÖÔ²¶ÌÖáµÄÉ϶¥µãΪA£¬ÊÔÕÒ³öÒ»¸öÒÔµãAΪֱ½Ç¶¥µãµÄµÈÑüÖ±½Ç¡÷ABC£¬²¢Ê¹µÃB¡¢CÁ½µãÒ²ÔÚÍÖÔ²ÉÏ£¬²¢Çó³ö¡÷ABCµÄÃæ»ý£»
£¨3£©¶ÔÓÚÍÖÔ²
x2 |
a2 |
·ÖÎö£º£¨1£©¼ÙÉ趯µãP×ø±ê£¬ÀûÓÃÌõ¼þ£¬½¨Á¢µÈʽ£¬»¯¼ò¿ÉÅж϶¯µãPµÄ¹ì¼££»
£¨2£©¸ù¾ÝÌõ¼þ¿ÉÖª£¬AB£¬ACÓ¦ÊǹØÓÚyÖá¶Ô³Æ£¬½«Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬´Ó¶ø¿ÉÇóAC³¤£¬¹Ê¿ÉÇóÃæ»ý£»
£¨3£©Ó루2£©Í¬·¨£¬½«Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÇóAB£¬ACµÄ³¤£¬ÀûÓÃ|AB|=|AC|¿ÉÅжϣ®
£¨2£©¸ù¾ÝÌõ¼þ¿ÉÖª£¬AB£¬ACÓ¦ÊǹØÓÚyÖá¶Ô³Æ£¬½«Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬´Ó¶ø¿ÉÇóAC³¤£¬¹Ê¿ÉÇóÃæ»ý£»
£¨3£©Ó루2£©Í¬·¨£¬½«Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÇóAB£¬ACµÄ³¤£¬ÀûÓÃ|AB|=|AC|¿ÉÅжϣ®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬É趯µãP£¨x£¬y£©£¬Ôò
=
£¬»¯¼òµÃ
+y2=1£¬
¡à¶¯µãPµÄ¹ì¼£ÊÇÍÖÔ²£¨4·Ö£©
£¨2£©A£¨0£¬1£©£¬ÉèAB£ºy=x+1£¬AC£ºy=-x+1£¬Ôò¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐÎ
ÓÉ
µÃ£¬5x2+9x=0¡à|AC|=
|xC-xA|=
¡àS¡÷ABC=
|AC|2=
---------£¨10·Ö£©
£¨3£©²»·ÁÉèlAB£ºy=kx+1£¨k£¾0£©£¬lAC£ºy=-
x+1
ÓÉ
µÃ£¬£¨1+a2k2£©x2+2ka2x=0¡à|AB|=
|xA-xB|=
•
ͬÀí¿ÉµÃ|AC|=
•
=
•
ÓÉ|AB|=|AC|µÃ£¬k3-a2k2+a2k-1=0¼´£¨k-1£©[k2+£¨1-a2£©k+1]=0¡àk=1»òk2+£¨1-a2£©k+1=0
ËùÒÔµ±a£¾
ʱ£¬´æÔÚÈý¸öµÈÑüÖ±½ÇÈý½ÇÐΣ»
µ±1£¼a¡Ü
ʱ£¬´æÔÚÒ»¸öµÈÑüÖ±½ÇÈý½ÇÐΣ®-------------------------------------£¨16·Ö£©
| ||||
|x-
|
2
| ||
3 |
x2 |
9 |
¡à¶¯µãPµÄ¹ì¼£ÊÇÍÖÔ²£¨4·Ö£©
£¨2£©A£¨0£¬1£©£¬ÉèAB£ºy=x+1£¬AC£ºy=-x+1£¬Ôò¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐÎ
ÓÉ
|
1+1 |
9
| ||
5 |
1 |
2 |
81 |
25 |
£¨3£©²»·ÁÉèlAB£ºy=kx+1£¨k£¾0£©£¬lAC£ºy=-
1 |
k |
ÓÉ
|
1+k2 |
1+k2 |
2ka2 |
1+a2k2 |
ͬÀí¿ÉµÃ|AC|=
1+
|
| ||
1+
|
1+k2 |
2a2 |
k2+a2 |
ÓÉ|AB|=|AC|µÃ£¬k3-a2k2+a2k-1=0¼´£¨k-1£©[k2+£¨1-a2£©k+1]=0¡àk=1»òk2+£¨1-a2£©k+1=0
ËùÒÔµ±a£¾
3 |
µ±1£¼a¡Ü
3 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¹ì¼£Óë¹ì¼£·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿