题目内容
(1)若动点P到定点![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_ST/2.png)
(2)设(1)中椭圆短轴的上顶点为A,试找出一个以点A为直角顶点的等腰直角△ABC,并使得B、C两点也在椭圆上,并求出△ABC的面积;
(3)对于椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_ST/3.png)
【答案】分析:(1)假设动点P坐标,利用条件,建立等式,化简可判断动点P的轨迹;
(2)根据条件可知,AB,AC应是关于y轴对称,将直线方程与椭圆方程联立,从而可求AC长,故可求面积;
(3)与(2)同法,将直线方程与椭圆方程联立,求AB,AC的长,利用|AB|=|AC|可判断.
解答:解:(1)由题意,设动点P(x,y),则
,化简得
,
∴动点P的轨迹是椭圆(4分)
(2)A(0,1),设AB:y=x+1,AC:y=-x+1,则△ABC是等腰直角三角形
由
得,5x2+9x=0∴
∴
---------(10分)
(3)不妨设lAB:y=kx+1(k>0),![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/5.png)
由
得,(1+a2k2)x2+2ka2x=0∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/7.png)
同理可得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/8.png)
由|AB|=|AC|得,k3-a2k2+a2k-1=0即(k-1)[k2+(1-a2)k+1]=0∴k=1或k2+(1-a2)k+1=0
所以当
时,存在三个等腰直角三角形;
当
时,存在一个等腰直角三角形.-------------------------------------(16分)
点评:本题主要考查轨迹与轨迹方程,考查直线与椭圆的位置关系,属于中档题.
(2)根据条件可知,AB,AC应是关于y轴对称,将直线方程与椭圆方程联立,从而可求AC长,故可求面积;
(3)与(2)同法,将直线方程与椭圆方程联立,求AB,AC的长,利用|AB|=|AC|可判断.
解答:解:(1)由题意,设动点P(x,y),则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/1.png)
∴动点P的轨迹是椭圆(4分)
(2)A(0,1),设AB:y=x+1,AC:y=-x+1,则△ABC是等腰直角三角形
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/4.png)
(3)不妨设lAB:y=kx+1(k>0),
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/5.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/7.png)
同理可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/8.png)
由|AB|=|AC|得,k3-a2k2+a2k-1=0即(k-1)[k2+(1-a2)k+1]=0∴k=1或k2+(1-a2)k+1=0
所以当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/9.png)
当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182740648517543/SYS201310241827406485175024_DA/10.png)
点评:本题主要考查轨迹与轨迹方程,考查直线与椭圆的位置关系,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目