题目内容

已知函数为实数,),,⑴若,且函数的值域为,求的表达式;
⑵设,且函数为偶函数,求证:.

(1),(2)证明略.

解析试题分析:(1)由于的表达式与有关,而确定的表达式只需求出待定系数,因此只要根据题目条件联立关于的两个关系即可;(2)由为偶函数可先确定,而可不妨假设,则,代入的表达式即可判断的符号.
试题解析:⑴因为,所以,因为的值域为,所以,所以,所以,所以
⑵因为是偶函数,所以,又,所以,因为,不妨设,则,又,所以,此时,所以
考点:二次函数表达式的求解,分段函数求值问题,化归与转化的思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网