题目内容
平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,-2),点C满足OC |
OA |
OB |
(Ⅰ)求点C的轨迹方程;
(Ⅱ)设点C的轨迹与双曲线
x2 |
a2 |
y2 |
b2 |
1 |
a2 |
1 |
b2 |
分析:(1)由向量等式,得点C的坐标,消去参数即得点C的轨迹方程;
(2)将直线与双曲线方程组成方程组,利用方程思想,求出x1x2+y1y2,再结合向量的垂直关系得到关于a,b的关系,化简即得结论.
(2)将直线与双曲线方程组成方程组,利用方程思想,求出x1x2+y1y2,再结合向量的垂直关系得到关于a,b的关系,化简即得结论.
解答:解:(Ⅰ)设C(x,y),∵
=α
+β
,
∴(x,y)=α(1,0)+β(0,-2).
∴
即点C的轨迹方程为x+y=(15分)
(Ⅱ)由
得(b2-a2)x2+2a2x-a2-a2b2=0
由题意得
(8分)
设M(x1,y1),N(x2,y2),
则x1+x2=-
,x1x2=-
(10分)
∵以MN为直径的圆过原点,∴
•
=0.即x1x2+y1y2=0.
∴x1x2+(1-x1)(1-x2)=1-(x1+x2)+2x1x2
=1+
-
=0.即b2-a2-2a2b2=0.
∴
-
=2为定值.(14分)
OC |
OA |
OB |
∴(x,y)=α(1,0)+β(0,-2).
∴
|
|
即点C的轨迹方程为x+y=(15分)
(Ⅱ)由
|
由题意得
|
设M(x1,y1),N(x2,y2),
则x1+x2=-
2a2 |
b2-a2 |
a2+a2b2 |
b2-a2 |
∵以MN为直径的圆过原点,∴
OM |
ON |
∴x1x2+(1-x1)(1-x2)=1-(x1+x2)+2x1x2
=1+
2a2 |
b2-a2 |
2(a2+a2b2) |
b2-a2 |
∴
1 |
a2 |
1 |
b2 |
点评:本小题主要考查双曲线的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.
练习册系列答案
相关题目
平面直角坐标系中,O为坐标原点,已知两点A(3,1)、B(-1,3),若点C满足
=α
+β
,其中α、β∈R,且α+β=1,则点C的轨迹方程为( )
OC |
OA |
OB |
A、3x+2y-11=0 |
B、(x-1)2+(y-2)2=5 |
C、2x-y=0 |
D、x+2y-5=0 |