题目内容
18.命题“?x∈R,x2-x+1>0”的否定是( )A. | ?x0∈R,x02-x0+1≤0 | B. | ?x0∈R,x02-x0+1≤0 | ||
C. | ?x0R,x02-x0+1≤0 | D. | ?x0∈R,x02-x0+1≤0 |
分析 直接利用全称命题的否定是特称命题写出结果即可.
解答 解:因为全称命题的否定是特称命题,所以,命题“?x∈R,x2-x+1>0”的否定是:?x0∈R,x02-x0+1≤0.
故选:D.
点评 本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关题目
3.当x∈[1,2],函数y=$\frac{1}{2}$x2与y=ax(a>0)的图象有交点,则a的取值范围是( )
A. | [$\frac{1}{2}$,2] | B. | [$\frac{1}{2}$,$\sqrt{2}$] | C. | [$\frac{1}{4}$,2] | D. | [$\frac{1}{4}$,$\sqrt{2}$] |
10.设△ABC的内角A,B,C所对边的长分别a,b,c,若b+c=2a,3sinA=5sinB,则角C=( )
A. | $\frac{π}{3}$ | B. | $\frac{3π}{4}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
8.已知角α的终边与以坐标原点为圆心,以1为半径的圆交于点P(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),则角α的最小正值为( )
A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{5π}{3}$ | D. | $\frac{11π}{6}$ |