题目内容

下列四个命题中不正确的是 (  )

A.若动点与定点连线的斜率之积为定值,则动点的轨迹为双曲线的一部分

B.设,常数,定义运算“”:,若,则动点的轨迹是抛物线的一部分

C.已知两圆、圆,动圆与圆外切、与圆内切,则动圆的圆心的轨迹是椭圆

D.已知,椭圆过两点且以为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线

 

【答案】

D

【解析】

试题分析:对A,一般地,由题设知直线PA与PB的斜率存在且均不为零kPA?kPB=,整理得,点P的轨迹方程为x2-y2=(x≠±4),即动点的轨迹为双曲线的一部分,A正确;

B:∵m*n=(m+n)2-(m-n)2,∴

,设P(x,y),则y= ,即y2=4ax(x≥0,y≥0),即动点动点的轨迹是抛物线的一部分,B正确;

C:由题意可知,动圆M与定圆A相外切与定圆B相内切

∴MA=r+1,MB=5-r

∴MA+MB=6>AB=2

∴动圆圆心M的轨迹是以A,B为焦点的椭圆,C正确;

D设此椭圆的另一焦点的坐标D (x,y),

∵椭圆过A、B两点,则 CA+DA=CB+DB,

∴15+DA=13+DB,∴DB-DA=2<AB,

∴椭圆的另一焦点的轨迹是以A、B为焦点的双曲线一支,D错误

故选 D

考点:本题主要考查圆、椭圆、双曲线的定义及标准方程。

点评:本题考查知识点覆盖面广,解答难度大,能较全面地考查学生对圆锥曲线问题的掌握情况。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网