题目内容

已知椭圆短轴的一个端点为,离心率为.
(1)求椭圆的标准方程;
(2)设直线交椭圆两点,若.求

(1)椭圆的标准方程;(2).

解析试题分析:(1)由已知得,又联立可解得,从而可求椭圆的标准方程;
(2)先设A(x1,y1),B(x2,y2),把直线方程和椭圆方程联立得到一个关于的二次方程,再利用弦长公式即可求出.
试题解析:(1)由题意可设椭圆C的标准方程为(>>0).
由已知b=1,所以,因为=,∴a2=9,b2=1.
∴椭圆C的标准方程为+y2=1.                 6分
(2)设A(x1,y1),B(x2,y2).由
               8分
∴x1+x2,x1x2
∴|AB|===.
,解得.                12分
考点:椭圆的定义、设而不求思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网