题目内容
已知数列{an}的前n项和为Sn,若点(n,Sn)(n∈N*)在函数f(x)=3x2-2x的图象上,则{an}的通项公式是( )
分析:由已知即可得出Sn与n的关系,再利用an=
,即可得出.
|
解答:解:∵点(n,Sn)(n∈N*)在函数f(x)=3x2-2x的图象上,
∴Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5.
当n=1时也成立.
∴an=6n-5.
故选B.
∴Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5.
当n=1时也成立.
∴an=6n-5.
故选B.
点评:本题主要考查数列的通项公式,熟练掌握利用an=
求an的方法是解题的关键.
|
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
A、16 | B、8 | C、4 | D、不确定 |