题目内容
已知双曲线x2 |
4 |
y2 |
b2 |
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.
分析:(I)利用双曲线的方程得到a,利用双曲线的定义得到,||PF1|-|PF2||=4,将它与已知等式联立得到关于|PF2|的方程
由于|PF2|<4,所以该方程在(0,4)上有解,得到c的范围从而得到b的范围,据b是自然数,求出b的值.
(II)求出抛物线方程与直线方程,将直线方程与抛物线方程联立,解方程组,求出交点坐标,利用两点距离公式求出弦长|AB|.
由于|PF2|<4,所以该方程在(0,4)上有解,得到c的范围从而得到b的范围,据b是自然数,求出b的值.
(II)求出抛物线方程与直线方程,将直线方程与抛物线方程联立,解方程组,求出交点坐标,利用两点距离公式求出弦长|AB|.
解答:解(I)根据题意a2=4,即a=2,
又,a2+b2=c2,||PF1|-|PF2||=2a=4,
又|PF1|•|PF2|=|F1F2|2=4c2,|PF2|<4,得
|PF2|2+4|PF2|-4c2=0在区间(0,4)上有解,即4c2=|PF2|2+4|PF2|有解
又|PF2|<4,故|PF2|2+4|PF2|<32
所以c2<8
因此b2<4,又b∈N*,
所以b=1
(II)双曲线方程为
-y2=1,
右顶点坐标为(2,0),即F(2,0)
所以抛物线方程为y2=8x (1)
直线方程为y=x-2 (2)
由(1)(2)两式联立
,
解得
和
所以弦长|AB|=
=16=16
又,a2+b2=c2,||PF1|-|PF2||=2a=4,
又|PF1|•|PF2|=|F1F2|2=4c2,|PF2|<4,得
|PF2|2+4|PF2|-4c2=0在区间(0,4)上有解,即4c2=|PF2|2+4|PF2|有解
又|PF2|<4,故|PF2|2+4|PF2|<32
所以c2<8
因此b2<4,又b∈N*,
所以b=1
(II)双曲线方程为
x2 |
4 |
右顶点坐标为(2,0),即F(2,0)
所以抛物线方程为y2=8x (1)
直线方程为y=x-2 (2)
由(1)(2)两式联立
|
解得
|
|
所以弦长|AB|=
(x2-x1)2+(y2-y1)2 |
点评:求圆锥曲线的方程,一般利用待定系数法;解决直线与圆锥曲线的位置关系问题,一般设出直线方程,将直线方程与圆锥曲线方程联立,消去一个未知数,得到关于一个未知数的二次方程,利用韦达定理,找突破口.注意设直线方程时,一定要讨论直线的斜率是否存在.
练习册系列答案
相关题目