题目内容

12.在△ABC中,点G是△ABC的重心,若存在实数λ,μ,使$\overrightarrow{AG}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则(  )
A.λ=$\frac{1}{3}$,μ=$\frac{1}{3}$B.λ=$\frac{2}{3}$,μ=$\frac{1}{3}$C.λ=$\frac{1}{3}$,μ=$\frac{2}{3}$D.λ=$\frac{2}{3}$,μ=$\frac{2}{3}$

分析 由三角形的重心分中线为$\frac{1}{2}$得λ,μ的值.

解答 解:∵点G是△ABC的重心,
∴点G分中线为$\frac{1}{2}$
∴$\overrightarrow{AG}$=$\frac{2}{3}×\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$)=$\frac{1}{3}$($\overrightarrow{AB}+\overrightarrow{AC}$),
∵$\overrightarrow{AG}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,
∴$λ=μ=\frac{1}{3}$,
故选:A.

点评 本题考查三角形的重心性质、向量相等,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网